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Abstract A report on the progress on the high resolution data analysis of the
ADMX experimental results is presented. In this paper, tools are developed and
tested on a blind injection mimicking a Maxwellian like signal in the frequency
domain. This blind injection will be used as a test bed which can be later
implemented on all the high resolution data. The high resolution data is stored in
the Fermilab server. In this analysis a PostgreSQL query was made to ensure the
blind injection is in the middle of the frequency spectrum and 19 such files were
found. The time series data is read using a c++ program. An apodization function
is applied on the time series data and zero filled to reduce the frequency spacing
in order to achieve a better interpolation. A FFTW header is used to compute the
Fourier transform of the time series data. A Savitzky–Golay filter is applied on the
unnormalized power which then can be used to remove the spectral shape. Each
frequency spectrum has a bandwidth of 50 kHz.
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1 Introduction

The Axion Dark Matter eXperiment (ADMX) uses a cylindrical RF cavity in a high
magnetic field and a superconducting amplifier to search for a hypothetical particle
called the axion, which if it exists is a solution to the strong CP problem in QCD
[1] and a possible cold dark matter candidate [2]. During the experiment the axion
decays into photons in the presence of a high magnetic field in a process called the
Primakoff conversion. Since the mass of axion is unknown, to detect these photons
the RF cavity is tuned to a frequency that matches the total energy of the axion

and resonantly enhances the conversion process (fa = mac2

h
). Since the galactic

halo axions are non-relativistic, the total energy of axion is given by Ea = mac
2 +

1
2mav

2. The signal undergoes a diurnal and annual modulation due to the Earth’s

rotation and revolution around the Sun. The frequency modulation is given by δf
fa

=
va |δv|

c2 . The frequency shift has been calculated by Ling et al. in 2004 [3]. The shift in

a 100s time interval due to the Earth’s orbital motion Δfo is O(10−12f0) and for the
Earth’s rotation Δfr is O(10−11f0). The high resolution channel has a frequency
resolution of 0.01 s and will be able to detect these frequency modulation when the
axions are found, whereas the velocity dispersion of axions in the medium resolution
channel is O(10−4c) [4]. To test and develop a search pattern, a sine wave injection
or blind injection can be used. This has been demonstrated by the advanced LIGO
group to validate the discovery of gravitational waves [5].

2 Fast Fourier Transform Techniques

The time series gets truncated due to the finite number of points. The instrument
function I (ω) of the time series data f (t) is defined by the exponential Fourier
transformation

I (ω) = 1

2π

∫ T
2

T
2

dt f (t)a(t)e−iωt . (1)

If the time series data, f (t) contains a periodic signal, e.g. a sine wave, the Fourier
transform of f (t) a(t) will be a convolution of F(ω) and A(ω). In the absence
of an apodization function, a(t) = 1. The Fourier transform of the rectangular

apodization is, A(ω) = 1
2π

sin
(
ω T

2

)
ω T

2
. Because the F(ω) is a delta function, the

convolution of F(ω) and A(ω) will be a sinc function. To minimize the sidelobes in
the sinc function, an apodization function is often used in the spectral analysis. In a
high resolution data analysis, the spectrum is dominated by noise, hence minimizing
the side lobes is not required. The frequency resolution of the spectrum is set by the
measurement time which for this case is 0.01 Hz. However a better interpolation is
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achieved by adding zeros to the time series [6]. If f(n) is the time series and f(k) its
Fourier transform

f (k) =
N−1∑
n=0

f (n)e−i 2πkn
N+M +

����������0M+N−1∑
n=N

f (n)e−i 2πkn
N+M =

N−1∑
n=0

f (n)e−i 2πkn
N+M . (2)

Here N is the number of points in the time series and M is the zeros added to the
time series. The frequency resolution of the original time series was Ω = 2π

N
. This

got reduced to Ωe = 2π
N+M

.
The data analysis can proceed in two steps. The first is to find the candidates.

Once the candidates are found, it can be zero filled to reduce the frequency spacing
which results in a better interpolation. A peak detection algorithm is likely to find the
center frequency of the axion signal more accurately in a zero filled spectrum than
the original frequency spectrum due to smaller frequency spacing. A compromise
needs to made since a higher order zero will fill up the disk space faster than a lower
order zero fill (Fig. 1).

Fig. 1 This figure shows the Fourier transform of a sine wave with a 25 kHz frequency with
various degrees of zero fill. The peak of the signal is closer to 25 kHz on a zero filled spectrum
than the original spectrum
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3 Power Spectrum and Distribution

The time series data has a time spacing of Δt = 10.24µs. Each data file contains a
total of 9 million data points. The zero fill is done as a multiple of the total number of
data points. Making the total number of points a power of two will make the program
run faster. Once the apodization function is chosen and the amount of zero fill is
decided, a Fourier transform of the time series is computed (Fig. 2). In this paper,
a FFTW package was used on a c++ program to compute the Fourier transform
[7]. The Fourier frequency is computed as fF = 1

kΔt
and k can have values from

0 to n−1
2 , where n is the total number of data points in the time series. The start

frequency of the spectrum is stored in the time series file which can be read and
added to the Fourier frequency to get the actual frequency of the spectrum. The
complex Fourier transform can be expressed as sine and cosine transforms. The sine
and cosine transform of the noise in the time series follows a Gaussian distribution
with two random variables in the frequency domain. The distribution function is
given by

dP

dA
= 1

2πσ 2 e
−x2

2σ2 e
−y2

2σ2 , (3)

Fig. 2 Comparison of a Hann apodization and a no-apodization frequency spectrum with back-
ground noise and a blind axion injection



HiRes 93

converting x and y to polar coordinates r and θ . The θ integral can be integrated to
get 2π . This gives us the Rayleigh distribution

P = 1

2πσ 2

∫ ∞

0
r dr

∫ 2π

0
dθ e

−r2

2σ2 = 1

σ 2

∫ ∞

0
r dr e

−r2

2σ2 . (4)

Since we are interested in the power due to Primakoff conversion, the amplitude can
be squared to find the rms power. The resulting probability distribution function is
an exponential distribution

dP

dp
= 1

σ 2
e

−p

σ2 . (5)

Taking the logarithm of the above equation, we find

log(P (x)) = − p

σ 2 + c. (6)

This is of the form y = mx + c, a straight line with a negative slope (Fig. 3). A gen-
eralized distribution function for n-bin data has been derived by L. Duffy et. al [8].

Fig. 3 Histogram of unfiltered noise spectrum on a semilog scale which follows Eq. (7). The
scattering at the end of the line is due to the blind axion injection. A spectrum with a real axion
signal is expected to have a similar distribution
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4 Spectral Shape of the Noise

The spectral shape of the noise (Fig. 2) refers to the amplitude dependence of the
noise as a function of the frequency and is due to the systematic effects that are
introduced in the receiver chain. These systematic errors should be corrected before
establishing a noise baseline. In the previous high resolution searches [4, 8], the
spectral shape was removed by dividing the frequency data by a polynomial of
order n as a function of frequency offset using the equivalent circuit model which
estimates the rms value of noise power at the NRAO output. The spectral shape can
be removed even without the equivalent circuit model by a textbook implementation
of Savitzky–Golay digital filter [9] (Fig. 4). Due to the number of points in the
time series, the window size of such a filter should be large to achieve a smaller
standard deviation in the filtered data. With the use of high performance computing
techniques, the Savitzky–Golay filters can be employed for the removal of spectral
shape. The Savitzky–Golay filter has two variables, window size and order. The
filtered data is a convolution of Savitzky–Golay coefficients and the unnormalized
data and can be written as [10]

Fig. 4 Plot of the frequency spectrum after the application of a Savitzky–Golay filter on the noise
spectrum. The Savitzky–Golay has preserved the spectral shape of the noise distribution which can
be used to flatten the noise spectrum
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P SG
j (f ) =

M−1
2∑

i=− M−1
2

CiPi+j (f ). (7)

Here, the window size of the filter is M and Ci are the normalized Savitzky–Golay
convolution coefficients. The coefficients can be calculated by forming a least square
polynomial of order n and using the Moore–Penrose inverse to solve a set of M+1
linear equations. The sum of all coefficients is one. The sharp dip at the ends of
the Savitzky–Golay filtered spectrum is due to the Gibbs phenomenon. Since the
Savitzky–Golay filter requires convolution, the data needs to be extended at the start
and the end. This determines the length of the dip at the ends of the spectrum. One
way to remove the dip is to use Gegenbauer polynomials [11]. However, in this
paper it has been removed by chopping off the ends. The data that has been lost can
be covered in the next spectrum.

Fig. 5 Plot of the flattened frequency spectrum after the removal of the spectral shape. The
Savitzky–Golay has preserved the spectral shape of the noise distribution which was used to flatten
the frequency spectrum. The mean is plotted in red and is equal to 1
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5 Future Work

Since the window size of the Savitzky–Golay filter is chosen such that the mean
of the filtered data is equal to the unnormalized power, the mean of the normalized
spectrum is equal to 1. This can be seen in Fig. 5. To improve the S/N, the frequency
data can be averaged by sub-dividing the time series data and zero filling the
subdivided time series and averaging all the frequency spectra. This is similar to
what the spectrum analyzer does. Once the apodization function is chosen and the
time series is subdivided and zero filled, the exclusion limits can be set. The search
pattern that is developed on the blind injection can be used in the analysis of the
data obtained in the experimental search for axions.
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